

Situation

Discovery of Dioxin/Furan contamination

- Redevelopment of a private plot of land on Avenue Victor-Ruffy in Lausanne
- PCDD/Fs levels in the order of magnitude of the OSol remediation value of 96 and 107 ng i-TEQ/kg
- Subsequent successive surveys for mapping (> 120)

unisanté

Dioxins and furans

- · Set of congeners of similar structure
- · Variable toxicity: reprotoxicity, cancerogenicity, immunotoxicity
- Environmental and human biopersistence

Name	Struktur	Anzahl K	Anzahl Kongenere	
Polychlorierte Dioxine (PCDD)	CI, CI,	75	7	
Polychlorierte Furane (PCDF)	ci, Q Q Ci,	135	10	
Polychlorierte Biphenyle (PCB)		209	12	

 Target value based on reprotoxic effects (most sensitive effect)

3

Regulatory thresholds - soils

- Calculation of toxic equivalent concentrations
- Ability to interact with AHR (aryl hydrocarbon receptor)
- $TEQ = \sum_{i=1}^{n} (C_i \cdot TEF_i)$
- Depending on the exposure scenario
- Playground sanitation threshold: based on unintentional ingestion of soil by children

	Sources
5 ng i-TEQ /kg soil dry matter	OSol; SR 814.12
20 ng i-TEQ /kg dm soil	OSol; SR 814.12
20 ng i-TEQ /kg dm soil	OSol; SR 814.12
100 ng i-TEQ /kg dm soil	OSol; SR 814.12
100 ng i-TEQ /kg dm soil	OSol; SR 814.12
1000 ng i-TEQ /kg dm soil	OSol; SR 814.12
	20 ng i-TEQ /kg dm soil 20 ng i-TEQ /kg dm soil 100 ng i-TEQ /kg dm soil 100 ng i-TEQ /kg dm soil

Regulatory Thresholds - Food

Measurement in batches, when placed on the market

Regulatory values for foodstuffs		Sources
Mixed animal fats	1.5 pg TEQ _{WHO-05} /g fat	OCont; SR 817.022.15
Raw milk and dairy products	2.5 pg TEQ _{WHO-05} /g fat	OCont; SR 817.022.15
Sheep		
Sheepmeat and sheepmeat products	2.5 pg TEQ _{WHO-05} /g fat	OCont; SR 817.022.15
Sheep livers and derived products	1.25 pg TEQ _{WHO-05} /g fresh weight	OCont; SR 817.022.15
Sheep fat	2.5 pg TEQ _{WHO-05} /g fat	OCont; SR 817.022.15
Chicken eggs		
Hen eggs and egg products	2.5 pg TEQ _{WHO-05} /g fat	OCont; SR 817.022.15

5

The issues

Situation

- High soil concentrations (>100 ng/kg)
- Wide area (> 20 ng/kg)

Technical complexity

- Complex pollutant, non-specific toxicity
- Several units of measurement (I-TEQ, WHO-TEQ) and soil extraction methods
- Variability of ground level concentrations and exposure situations

Communication

- Dioxins associated with the Seveso and Agent Orange tragedy (Vietnam)
- Legal and financial issues
- Possible lowering of the sanitation limit from 100 to 20 ng/kg

Health assessment Mandate DGS Danger Assessing the risk Characterization of the hazard source Supporting the authorities in the choice of preventive Exposure Estimation of measures contamination Pluridisciplinar working group Risk Evaluation Preventive measures, followunisantė

7

Situations identified

Scenarios

- Direct ingestion of soil by children
 - hand to mouth exposure
- Consumption of vegetables grown on contaminated soil
 - o cucurbits, unpeeled vegetables
- Consumption of food from animals that have fed on contaminated grass/fodder
 - o sheep, woolly pig
 - o eggs (private poultry houses)

unisanté

Centre universitaire de malabone painésse
et samé publique-Lausanne

8

Exposure assessment

Evaluation method

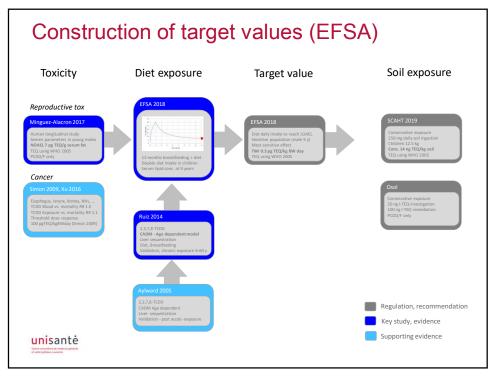
- Scenario of ingested doses
 - o medium (conservative) scenarios
 - o existing models / adaptations
- Limited sampling
 - sheep, rillettes, eggs, zucchini
- Modelling of serum concentrations
 - Different ground concentrations
 - Frequency of use/consumption

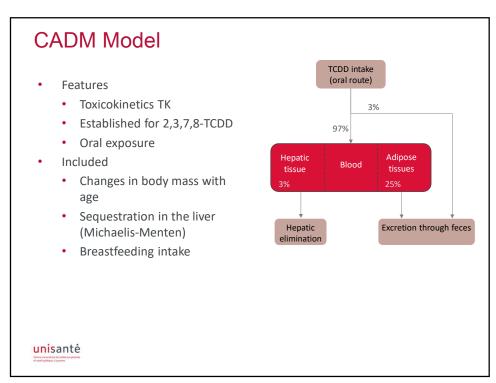
Computation	Model
Direct ingestion	Adaptation of the expert syst. (Mailänder and Hämmann 2005)
Vegetables	Bioconcentration factors (ADEME 2017)
Sheep	Adaptation of cow's model (Agroscope)
Eggs	RIVM model (Van Eijkeren et al. 2006)
Human (serum)	CADM (concentration- and age-dependent model) (Chain et al. 2018)

9

9

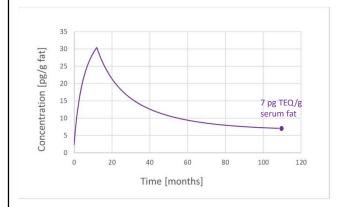
Target value


What is acceptable?


- · Threshold without effect?
- Target value (WHO/EFSA) for daily intake:
 0.3 pg TEQ/kg body weight.day
- Increased blood concentration in the general population

Present in our diet 0.6 pg TEQ/kg body weight.day (FOPH 2010)

10



CADM model

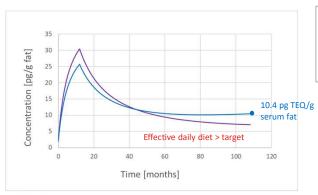
Initial EFSA calculation

- Endpoint: TCDD/F concentration in lipids at 9 years
- Adjustment of parameters to achieve the NOAEL of 7 pg TEQ/g fat in serum (Minguez 2017)

Parameters (A0)

Breastfeeding 12 months
Milk Conc. 6 pg/g fat
Diet intake 0.5 pg/BW day
Infants 2x diet intake

Adult diet 0.25 pg/BW day rounded to 0.3 pg/BW day


13

13

Adjustment for the Swiss population

Adjustment for the Swiss population

- For TCDD/F
- Daily diet (EFSA ref data 2009)
- Breastfeeding according to (FOPH 2010)

Parameters (Swiss pop.)

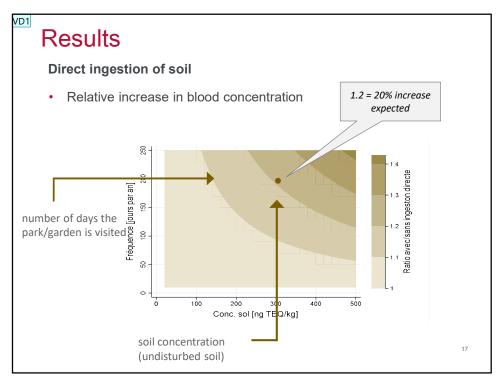
Breastfeeding 12 months Milk Conc. 5 pg/g fat Diet intake 0.6 pg/BW day Infants 2x diet intake

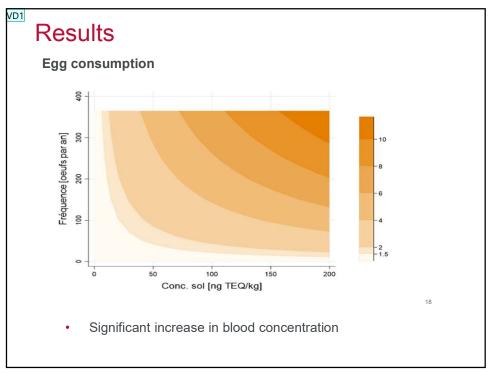
14

Direct ingestion of soil: parameters

- Frequency of use of the area: 0-250 days/year
- Body mass continuous growth of body mass with age (according to CADM model)
- Vegetation cover weighting of the expert model: no source data identified

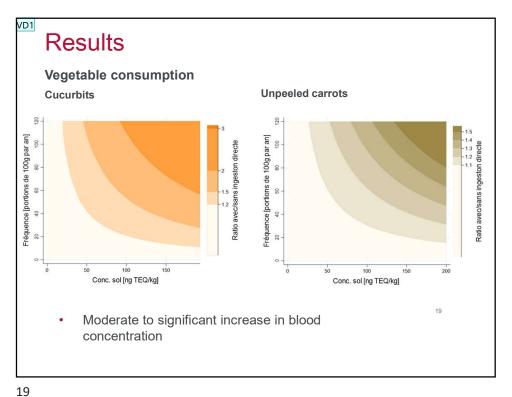
Vegetation cover (%)	Availability factor	
> 90%	0.7	
90 - 75%	0.85	
75%	1	


- Bioavailability: 75%.
- Age
 0 to 9 years, endpoint at 9 years


unisanté

15

15



Diapositive 17

VD1 Vernez David; 21.09.2021

Diapositive 18

VD1 Vernez David; 21.09.2021

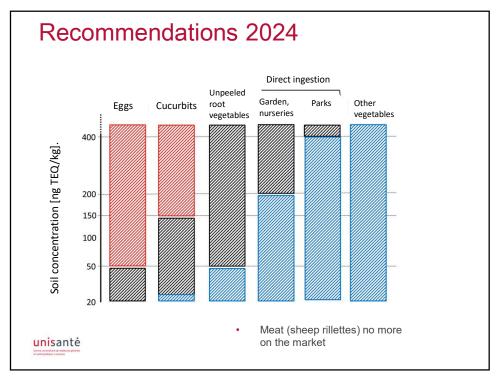
Appreciation

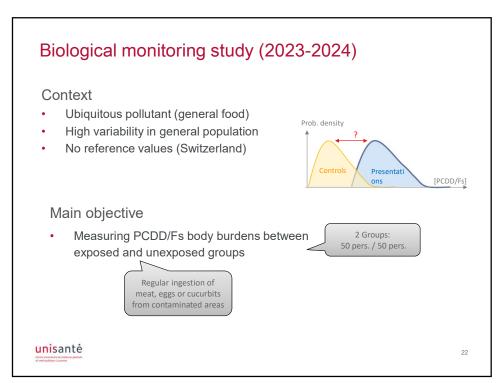
Based on relative increase in expected dose in serum

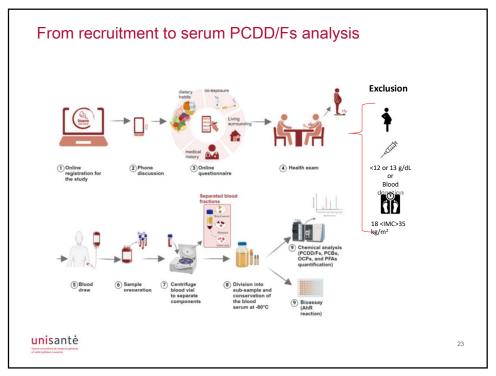
• < 20%. Low, not expected to be noticeable in the general population.

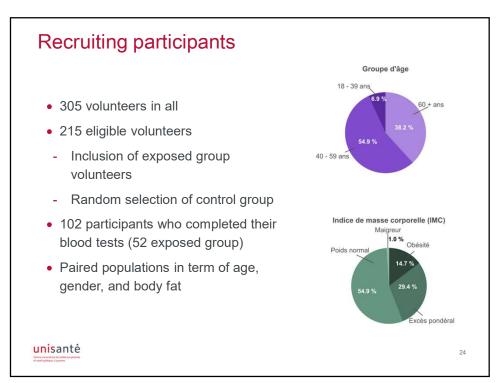
- standard hygiene recommendations
- 20-100 %. Notable, requires preventive measures.
 - technical or organizational measures to reduce exposure

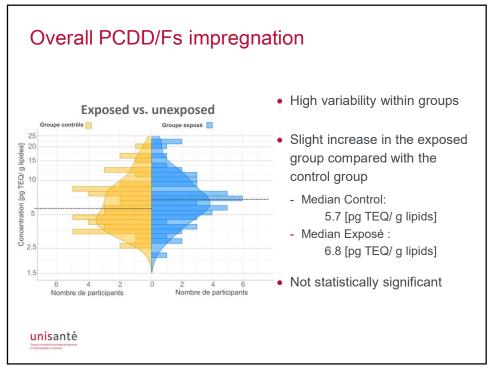
- > 100 %. Significant, should be avoided.
 - restrictive measures

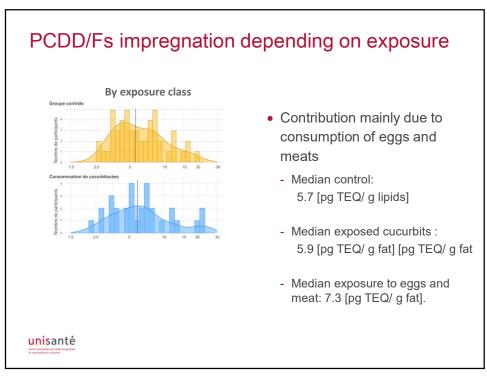



unisanté


20


Diapositive 19


VD1 Vernez David; 21.09.2021



Comparison with other European studies

	N participants	Age of population	Median	Interval value
Lausanne study	102	21 - 89	6.3	4.5 - 8.9 (25-75%)
Germany (Fromme 2009)	48	18 - 65	7.74	0.79 - 19.97 (5-95%)
France (Ploteau 2016)	109	23 - 48	6.10	4.52 - 8.26 (25-75%)
France (Esteban 2021)	604	18 - 74	7.46	4.97 - 10.99 (25-75%)

- · Blood concentrations similar to other European countries
- · Gradual decline since the '90s

27

27

Interpretation - Health effects

Reprotoxic effects (reduced male fertility)

- 30% of men in the control group and 42% in the exposed group have blood concentrations < 7.0 pg $_{\rm TEQOMS-05/g}$ lipids (NOAEL)
- Global problem, associated with other POPs and individual factors (smoking, obesity)

Carcinogenicity

- No significant association between dietary exposure to PCDD/Fs and an increased risk of cancer in humans in the literature.
- Cancer risk is minimal with measured PCDD/Fs blood concentrations

28

Recommendations based on results

- Importance of the land use pattern in prevention
 - breeding (meat and egg consumption) is the most problematic modality
- Usual diet is the main contributor to PCDD/Fs blood levels
 - ⇒ Participant follow-up is not appropriate
 - ⇒ No additional measures required
 - ⇒ Maintain egg and meat consumption restrictions
 - ⇒ Continue to follow standard hygiene practices
- · The study enabled us to better assess the risks

unisanté

29

29

One of many cases...

- College built in 1972
- · Contains various asbestos materials

false ceilings (accessible, low agglomerate)

First diagnosis in 2005

positive identification negative air measurements,...nothing happens

• Second diagnosis in 2014-2015

positive identification positive air measurement, the level of fibres in the air is 5x over the tolerated dose

· End of 2015 closure of the class

Alert the cantonal authorities
Parents' and teachers' concerns

unisantė

31

Ambiance amiantée au Conseil

communal

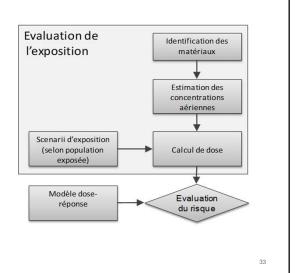
31

What to do?

Sanitizing and reassuring? Close the college? Assessing the risk?

A proven communication and management problem, a health problem to be assessed...

• Factors to consider

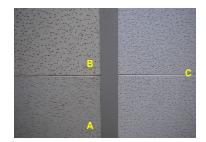

Large population, presence of children
Long term stay in the facility
Amphibole asbestos fibres (1000 FAR/m³ limit debatable)
Positive air measurement, the level of fibres in the air exceeds the tolerated dose in general population by a factor 5
Does the 5000 FAR/m³ measurement represent background noise?

32

Retrospective risk assessment

Joint Working Group

- Mandate of the Directorate of Education
- Expertise in occupational hygiene, toxicology, occupational medicine, school medicine, public health
- Parent and teacher representation
- Independent expertise


unisanté

33

Material identification

False ceilings

- Presence of asbestos amosite (1%)
- Population of complex false ceiling panels (positive sampling on B panels)
- Less than 50% of the ceiling area

unisanté

34

Estimated conc. Air

In situ measurements

- Use of classrooms being removed
 Opening and closing of doors and blinds, shocks
 Change of neon, change of plates
- · Ambient measurements

Laboratory measurements

- Falling, breaking and cutting of plates
- Re-analysis of the 2015 contaminated sample

Other investigations

- Exposure database, grey literature
- Weather data
- · History of the building

unisanté

Centre universitée de médiacine pérénde et santé publique—Lauranne

35

35

Exhibition scenarios

Population considered

- Teachers
- Students
- Janitor

Estimation of frequencies and duration of events

- Interventions on false ceilings
- Projections of objects
- Falling plates

Data sources

- Interviews
- Teacher Questionnaire
- Teaching statistics

36

36

COX glassia

Maximum cumulative hours of attendance at the College according to children's birth years - without repetition (Boratto, 2013)

Dose calculations

Population	Scénario	Age début exposition	Age fin exposition	Exposition	Commentaires
		[ans]	[ans]	[FAR/m³]	
Élève	moyen	6	15	59	
	pessimiste 1	6	17	128	red oublement de 2 années, 100% en classes amiantées
	pessimiste 2	6	17	155	Scenario pessimiste 1 + in cendie 1
Enseignant	moyen	25	34	52	
	pessimiste 1	25	54	140	ancienneté et durée hebdomadaire maximale observée dans l'établissement
	pessimiste 2	25	54	170	Scenario pessimiste 1 + incendie
	pessimiste 3	25	65	170	Scenario pessimiste 2 + vie profession nelle entière (cas virtuel)
Concierge	réel²	30	45	200	
	pessimiste 1	20	60	320	vie professionnelle entière (cas virtuel)

unisanté
Centre universitaire de málticose planinte
et santé publique—Lausanne

37

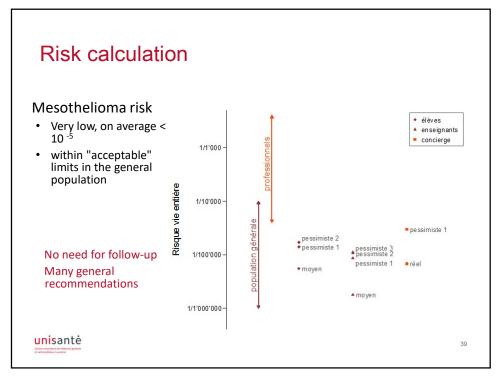
37

Choice of a dose-response model

Regulatory value

• Does not distinguish the type of fiber or the pathology

Using the DECOS model (2010)


- Lung cancer
- Mesothelioma
- Adaptation to the situation of Aigle's college Mortality of the Swiss population Coefficient for amosite alone

Calculation of the whole-life risk

• According to the exposure scenarios

38

